The Slack World
Issue #1, April 2005

SlackTips
Author: Mikhail Zotov

The section is aimed at new Slackware Linux users and intends to help them make their life in Linux more
effective. In this issue, we’ll take a look how aliases and functions can speed up some everyday operations in
bash.

First, a quote from man bash:

When bash is invoked as an interactive login shell, or as a non-interactive shell with the --login
option, it first reads and executes commands from the /etc/profile, if that file exists. After reading
that file, it looks for ~/.bash_profile, “/.bash_login, and ~/.profile, in that order, and reads
and executes commands from the first one that exists and is readable ... When an interactive shell
that is not a login shell is started, bash reads and executes commands from ~/.bashrc, if that file
exists.

In a freshly installed Slackware system, users have none of these files in their home directories. Thus we first
need to create them:

$ touch ~/.bash_profile ~/.bashrc

We want our aliases be read every time an interective shell is started (e.g., when we start xterm) and will thus
use ~/.bashrc for our purpose. To ensure that it is read every time we start an intercative shell, let’s put the
following lines in ~/.bash_profile:

.bash_profile

if [-f ~/.bashrc]; then
. ~/.bashrc

fi

From now on, I assume that all aliases and functions are put in ~/.bashrec.

The first thing to keep in mind is that every time we add something to ~/.bashrc we should make the shell
know about the changes. Thus we must source the file (see man bash or help source). To do this, one may
run either

$ source ~/.bashrc
or
$. ~/.bashrc

Let’s avoid doing this manually.

Suppose your favourite editor is mcedit. Let’s open ~/.bashrc with it and put the following alias [1]:
alias edb=’mcedit ~/.bashrc && . ~/.bashrc’

Now, exit mcedit and source ~/.bashrc. From now on, the only thing we need to do when we decide to add
a new alias to ”/.bashrc and make the shell know about it, is to run

$ edb

Here I use edb as an abbreviation for EDit ~/.Bashrc [2].

Now we are ready to do something useful. Let’s begin with a trivial task, namely, let us mount and unmount a
floppy. As is well known, this can be done as follows:

$ mount /mnt/floppy
$ umount /mnt/floppy

These commands look too long for an everyday usage. Yes, one can surely use <Ctrl>+<r> or arrow keys or
history to invoke commands that has already been run but I believe it is more convenient to use short aliases
in this case. Let us run edb once again and add the following lines to ~/.bashrc:

Mount Floppy

alias mf=’mount /mnt/floppy && cd /mnt/floppy && 1s’
Unmount Floppy

alias uf=’cd &% umount /mnt/floppy’

Exit from the editor, insert a floppy in the drive, and try our brand new aliases. Notice that we not only mount
the floppy but also cd to it and list its contents. This can be handy.

Using CDs calls us to invent more aliases since we can open and close trays from the command line. Let’s put
the following aliases in ~/.bashrc (once again, $ edb):

CDROM="/mnt/cdrom"

alias mcd=’mount $CDROM && cd $CDROM && 1s’

alias ucd=’cd && umount $CDROM && eject && sleep 10 && eject -t’
Eject CD:

alias ecd=’eject’

Close CD tray:

alias ccd=’eject -t’

Notice that now we not just umount a CD but also eject it, give ourselves 10 seconds to take it, and then close
the tray automatically. Besides this, we define a variable, CDROM. It can be useful if one day we decide to use
another mount point.

Here I assume that we only have one CD drive. During installation, Slackware creates the corresponding link in
the /dev directory. You will have to adopt the above aliases in case there are two CD drives attached to your
machine. In particular, you will have to indicate explicitly the second device in eject.

Now, assuming that we have a CD-RW drive, let’s do something interesting. Yes, let’s burn a disk. Everybody
surely knows how to burn a CD ‘at once’ from an image downloaded from a Slackware mirror. This doesn’t
happen too often thus one can forget how this is done. Let’s define an alias for this operation, e.g., this way:

DEV="dev=0,0,0"
alias burn=’ccd && cdrecord -eject $DEV -dao’

Here, “0,0,0” is taken from the output of cdrecord -scanbus. (One may want to add, say speed=16 or
whatever to be sure that the drive will burn CDs at the desired speed.) We also define another variable, DEV,
which will be used below.

Now, to burn a Slackware CD, one only has to eject the CD tray (ecd), put a blank CD, and execute the following
command:

$ burn /path/to/the/image/slackware-10.1-install-dl.iso

Voila! Notice that we don’t even have to close the CD tray.

Let’s see now how we can easily burn multi-session CDs from the CLI. We shall use bash functions to accomplish
the feat.

First, let us begin a new CD. I assume that we are using a CD-RW thus we’ll blank it first to be sure it is
clean. Next, we shall make an iso image from files prepared in a directory the name of which will be passed as
a parameter. The image will be saved in the home directory. Finally, we shall burn the CD, eject it, and delete
the iso image.

iso image:
IS0="/tmp/a.iso"

Make the iso image:
alias mkiso=’mkisofs -R -J -v -hide-rr-moved -o $IS0’

Time cdrecord waits before burning a CD
WAIT="gracetime=5"

Another handy alias:
alias BURN="cdrecord -v -eject $DEV $WAIT -tao -multi $ISO && \
rm -f $ISO && sleep 10 ; ccd"

begincd() {
ccd && \
cdrecord -v blank=fast $DEV $WAIT && \
mkiso $1 && BURN

}

addtocd() {
ced && \
mkiso -C ‘cdrecord -msinfo $DEV‘ -M /dev/cdrom $1 && \
BURN

}

A few comments are in order. First, we define a file to be used as an iso image (IS0). Next, we define an alias
that will not only save us some keystrokes in the next two functions but can also be used when we just need
to create an iso image, e.g., in case we want to burn a complete CD of our own. Besides this, we introduce a
variable WAIT, which will save us another couple of seconds. (We are in a hurry, aren’t we?) Finally, we define
another alias, BURN. It will be only used in our two functions thus I choose to put its name in capitals.

Thus, to begin a CD with files from the dirl directory, one now only has to eject the CD tray (ecd), put a
CD-RW, and execute the following command:

$ begincd diril
Similarly, to add files from dir2 to the CD, one ejects the CD tray, puts the CD, and executes the command
$ addtocd dir2

Quick and easy, isn’t it? Actually, we can even put ecd at the beginning of our definitions and then sleep for
some time. :-)

As we have seen, aliases and functions are powerful tools. They can be employed to do numerous different things:

e to navigate directories:

alias cda=’cd "/some/directory/where/I/am/writing/an/Article’
e to pack and unpack tar balls:

alias tgz=’tar czpvf’
alias utgz=’tar xzvf’

as easy as:

$ tgz arxiv.tgz slaxercises/
$ utgz arxiv.tgz

e to backup files, say, configuration files:
BACKUP_DIR="/path/to/the/backup/directory"

alias back="cd $BACKUP_DIR && tgz conf-‘date +%F‘.tgz ~/.77* && \
1s && cd"

e to keep a record of upgraded and removed packages (surely, these are for root’s .bashrc) [3]:
UPLOG=""/upgradepkg.log"
uplog () {
date >> $UPLOG

upgradepkg $@ | tee -a $UPLOG
}

REMLOG=""/removepkg.log"
remlog() {
date >> $REMLOG
removepkg $@ | tee -a $REMLOG
}
e to verify PGP signatures of freshly downloaded Slackware packages:

alias gpgv="for i in ./*.tgz ; do echo $i ; \
gpg --no-secmem-warning --verify $i.asc $i ; echo ; done"

e to listen music, e.g., to play all mp3 or wav files in the current directory:

alias mp3=’madplay -v --display-time=current ./*.mp3’
alias wav="for i in ./*.wav ; do play $i ; done’

e watch a collection of, say, jpg pics:
alias slide=’qiv -f -s --delay=5 -i ./*.jpg’
and do dozens of other things that make using Slackware even more fun than it is. Use your imagination!
Remarks

[1] A more generic way is the following:

alias edb=’$VISUAL ~/.bashrc && . ~/.bashrc’

I suggest that you check first whether $VISUAL really points to the desired editor ($ declare | grep VISUAL)
in order not to find yourself playing with elvis unintentionally. ;-)

[2] Feel free to choose another one. The only thing one should check before inventing a new name is to check
that it is not already occupied by a shell built-in or a program in your PATH. To do this, one can run

$ help new_name
$ which new_name

The new_name is free if you get no help and nothing is found.

[3] These records can, in particular, be used to check whether this or that package left any undeleted files after
being removed or upgraded.

Copyright (©) 2005 by The Slack World, check <http://www.slackworld.net/license.html> for the details.

The Slack World <http://www.slackworld.net/>invites you to send us your tips for the benefit of the Slackware
community.

